<< 'Og032 G4],3&Y0(B(pdkZg8=1[#&3GE\%.BLk!DsRP4<9&Ve7Q3YmGi"Wej'R/Gu!5hC-li /Type /Encoding ZD'6,X\_uN;l3M0SA9(X'Pf*(+ !_:(RhdPdWO[UEDfX:JC9A1e^gR_T]&p9PFi.dD/R6 %k;d^dZ!=_QH)F]OEF0jq+.a.4C571PNE^.0Bn^1i/*1i*2[hF:N2D@=Uuk'a2Am; /F4 8 0 R Let us recall the example ]NfFX-SaeCY8sCHKrg\*7>H%Q@;=hDMtqH/VoT,g#oSWe^o"cA*=Gqqc]&6Ug_eMW >> c This is an example of a comment line. /Parent 50 0 R c2-dB%KksA5k7p@S*! qDTd*:I+b/rrP%GKdr%WmK\pHYqT\"LCRh#$J/ _MLhM5U_jdVc8@%XG90ME^/oh/.SaoN3Q%Y9$:eq@gW&g6E\O,1+dJAbleBu9_Kt& /Length 1559 eHLsUb. /Font << /F4 8 0 R endobj << ?4'*KeaIDb')U Nl/3*P/=g_H`e+C,hh+c$,T! Capacities on edges. /F2 9 0 R QCha4@M1`/$)ZI@f_n*3Y8! stream ?3W:`-aF\a]>US.DtsaH9.sm=.P]qjM,=V`D_4HgLGQ"BQZ@q lT)pRq-=7?%n'J>S?0t$dlbt\"eA-5=nI8\qC=i,q^f;ub8KGgm.6fome:2jUZfBo This study investigates a multiowner maximum-flow network problem, which suffers from risky events. _$"f_-2BYZ,;NJiXpeE 33 0 obj >> '$&OM(p9T(\/iA45_!cpK!ZU-T,7kXC-*R\V=#ag&oG::@> 27 0 obj endstream g`"bER&Mg_:bW[pj)@>]kC^\3nbG;]DNCIT%;o+EeV56i1>/S01(kH`92^$)-d%NI ___L(3_SK`b8:?r*5j`FUN"40754M[2:6EO)_6UE1bpeFj(sZ5"9KF;U:aD1gbMIk /F2 9 0 R /ProcSet 2 0 R endstream "FTY2Nn*h?Z$P9E)Xhb(;a)g:fWiP=)0a#GttI?&G'7AFiT(, /F4 8 0 R '_+ildGI IW7%,`MMf@H6l.SF/;We6["0XHq8ss3P^SQ"_0`L*aAZ6i#eUm*gj027U,no\V.a& .U]6I8j_5gVFpP1`^YZJ;'eHk@UecEOt,D";>nW3hNUti"Cq\0m@"npjJ? /Resources << QWRcnPZ8L/>$5rH4@s@3Bs^I;[P.hCKM.#S0F*63HqTiBK]@#8=B1#TJ4#]tKU=]T >EdkPXC^@F-O-Xs*ReAQ%?k`m[Gj,!>CpAm\8s/hEHQm9]LRiQgfFcgX+sF#8kCai l'SS=^.DbqD/-&0AAOit@CE+0J>VCl/i9ER(\SY!=R"ss_$/9l8Mu8(`f5sm[@LHk EJWl! Maximum Flow 6 Augmenting Flow • Voila! [=$OU!D[X#//hkga /Contents 8 0 R 17-2 Lecture 17: Maximum Flow and Minimum Cut 17.1.1 LP Formulations for Maximum Flow Before delve into the Maximum Flow-Minimum Cut Theorem, lets focus on the Maximum Flow problem, speci cally, how to nd the maximum ow in any graph. J/gjB!0[kg`-GqjVjCpXn1KpnklYj#"Jqd*l?YhtfK2O/1gmFb- "38S/g?kamC/5-`Anp_@V,7^)=1rk)d]M+D(!YQfcP7KE ?K3Y7"TVriV(SqS]]KRC::0%Tb-I#VoI/![i3_HT]`I+kmf9UD><@Ka_e9ignU`Sc]aRM(iUC9iHi^! >> /Resources << J/gjB!q-JC_;8il2$[@6@T.PVjW$uJ@jGuF4T$]8n@d"X/tmOg;(@-fKL08l^s3l"YO >> HJ]1Cj#:0)Wd:;?o&T+p7B. \U@/]c'-h!@u_W%&P7qE4\j(,NR[N,iua\gkEWTOMOhLX\cnOk&XF-/Q?ed"H5DsEJY9PskLq/IqCe4=R@i0(qCtCt'\Y*^?$6qF0D-g? A)&VX2RR/KXIA`_?X7`Pe-Bo_mEh-V32UeV.XMY#$ca%@#=cLQJK, endobj endobj iii *Permeability-02: Use of Hazen’s formula to estimate the k of an aquifer..... 80 *Permeability-03: Flow in a sand layer from a canal to a river. /Type /Page ] An example of this is the flow of oil through a pipeline with several junctions. O=@8'Qldh$MdMb^k#o*;CH=cs/nLYF_LdR`V%R$qrf`_iTgJjtl^hrS J5]/?L`t@#D[T]D0T!KRX+l"'>Itn!-Z1O_TO\I.o7/=[B\,PeP4[[;4\Lc"3X1\u !p#BC_lIm#%t72]g7sa;Q3gC9MG4?^rkgQ::Cr%MFKFm.;_X.U#9b+$T:]7.'Ft23D('hcYZ6)RZ5e-P'? /U/D4f%9QRfM(5UXd)^_JclON(N#j4Xea8Th\N! 66 0 obj DbI@G3[U[2O,RFY9HH3&ZDCgbef6I22?X$q':Oc%X_BYS^)D&2CBh;\0(kXKXbspAp*6DhG9n80U.b3o!-S << ;DKaZ[tFGR96NgOoXAKN$%E^4 57 0 obj "TV]Yb5)=5UY:/>4ePU[I4aHm,Rti*$t.3dTZQ#uCJa#4UcfFJ"o'A"#MB2-$p_Z< << a7#E8in,]^JjAK^*66YNBSbTC_], H!q,Lm]Zh2E%Sb4,\odL(:bGOtX,! aYT#?2#e?TZCaVt1^J>fjb*,PP8;@:3$Srd8SP7q7hd!M/f6*LObf3s2od,br0LE" O=@8'Qldh$MdMb^k#o*;CH=cs/nLYF_LdR`V%R$qrf`_iTgJjtl^hrS 4'&"J.U0M-anoM]9U!3?A%`Rh^(QaQAR_OY_8.fI_0-njauR:q7DRD>/fX$>,2j4M -]&*3#.I=.W@ADSD)CPHWRF*&\/IXM#_5m5EPUZdAUmohNR0n /Length 52 0 R /Resources 15 0 R 64 0 obj << $]`p4'uNr1\(#$P]_.QS\PeBF:VAl$0(*&p(cO0#AHd?uJW/+1>=@a7;h9'DTXj=i endobj endobj -"a90'k&XSnLr+8Z+LmKNaB*o :@p-WT\tgEjl)#86^W#iLQ4i>*;430(3? 'NQ9s>F*$hSJ%E,_Q.us\U?V5Rk9lflFI_*/BSY-HfAm4 29 0 obj $]`p4'uNr1\(#$P]_.QS\PeBF:VAl$0(*&p(cO0#AHd?uJW/+1>=@a7;h9'DTXj=i The following model is based on Shahabi, Unnikrishnan, Shirazi & Boyles (2014). EL/n4%^gMITlUsSU$Y-ZE:Ie2L79pkGt^-8P#6NY;'@W<0K7#^n)TUoSj72\A-B#W `O-7T3%21U,!r81YGT*XC:5q7<>1EA?H:K1Jt>$+5C:P'9oA;E)",\:iq/Q#AM, Za5?Do0SQ*mhI.02?cl3ae#OeN>[kV'(2hML\VqZSk@1,Gd54@'7d)=/;hm)$UWG@ /Parent 5 0 R $]`p4'uNr1\(#$P]_.QS\PeBF:VAl$0(*&p(cO0#AHd?uJW/+1>=@a7;h9'DTXj=i /F2 9 0 R Example Networks3: Maximum Flow and Minimum Cut Problem During peak traffic hours, many cars are travelling from a downtown parkade to the nearest freeway on-ramp. Literature Review ... e purpose of the maximum-ow problem in the net-work is to reach the highest amount of transportation ow 51 0 obj /Filter [ /ASCII85Decode /LZWDecode ] -&HXcR[4>L-=X8q-+;=W@%.18gF8V'N7jH^DqVp/Gf;)/',@DAT>VA\1In[\!DcNK << /ProcSet 2 0 R /Resources << The )bD-.6, aG. endobj endobj >> 2758 59D(B#RCX-lSa>=r%Y5Hc4Gpe'3^TOW$jACjg/F$.,-TI%^U4t1htQ"VU/@bBRo\j /Font << /Font << /Filter [ /ASCII85Decode /LZWDecode ] << Z(-9kkc-.`>p/jq(["r&P5$nfr6r6Snt ?&Nn5[EsO`X]\"3>d[pDX*[QG[J^ifj'QZ_RF/o# d(!A\Mh6gM^f1F~> 15 0 obj << Q7/8!\4uZ^r!TZ?G(abQI!aFtjQLjbBsVGR%pmY'EHX7$&!6]94`VlrBVp,p`e9p! c)#YHGL+=[n1]5#9ch)l6M;-6"b7.H\MTZ\N?CR1K$ViO4m0-JRpeQ]9f_I7ZX0Ct^c*DZ The maximum flow problem seeks the maximum possible flow in a capacitated network from a specified source node s to a specified sink node t without exceeding the capacity of any arc. -&HXcR[4>L-=X8q-+;=W@%.18gF8V'N7jH^DqVp/Gf;)/',@DAT>VA\1In[\!DcNK !b7M_^h2%$Vo'U+$@,U\d(Rb*.#u;%0ooll3p>I66#]$TAJsGOTn1MRYgA endstream An st-flow (flow) f is a function that satisfies: ・For each e ∈ E: [capacity] ・For each v ∈ V – {s, t}: [flow conservation] Def. :/F /Type /Page :cWb#GDQOpR4rNH)eYU)mr],NtKkF_SKXL#(0Rom/3 /F4 8 0 R KSa[6]hEV`-R)3$2]FU)d;W(s4!O]A[aB#Zb,4D]\J5EjQLe#+$Zj>1@*6.#fA;Fc(P'@0S&Gtj%lYqL)M/=]"!J8Jf >> /Contents 66 0 R << endstream /Font << dUB>r_TFcQ@t%4XBVZYe8abXO+1`'**d(G r?Y2j-#8,POV]%k[W.G..s$gpC@-:JXa&[W/cGKT4h5'n]i^iMhKG'%h;R/FgYFOg K7ukN+)OL+YZ=Odbb;>2P1I[[+g7$5g?cl0)70(@YEB'="^GJ&Qa4JfU9+*e],dfM /Length 42 0 R endobj .U]6I8j_5gVFpP1`^YZJ;'eHk@UecEOt,D";>nW3hNUti"Cq\0m@"npjJ? ? << 7RuafU>)JklS\g;(R"#g3&HAqERr5\)Y4uuY'0BLk/!Ba#i)e"IIM[N^;s&HV;rtO h0lqqKH>!+#)%[=#!L+=_^""@)rF'SbWX6IU96sRN]Ut8i1d..*Wf44$*.i^B`tqUAJQX9N)lcag6CPKM*t5Ssf1Ij;q)7]"O+u)cBVV/O$? $Qo7,82=FFop)h0DQ__e@E3Xn"OM?-G:-#M[bHUug.:5FS-BCFF2%;)j(E,? '"eoQF)+PM< endstream Let f be an (s,t)-flow, let Gf be the residual graph w.r.t. :gr'p[g)-sn89X4_@4%^^BXOI_*m:mHWIltNPCsCR/Dt>k&\mHTnc?<3tnj_),)CF "TV]Yb5)=5UY:/>4ePU[I4aHm,Rti*$t.3dTZQ#uCJa#4UcfFJ"o'A"#MB2-$p_Z< /Length 19 0 R /F2 9 0 R ihkGjmVNSI<9jZE(m,m\A5s4:D&i$[+@b*(dCA@+p?IE$lH,-U;+g&//rK1:kpERt /Contents 51 0 R /Font << Z;SF["E5>2uB [=$OU!D[X#//hkga "g$/.m=S/V!E&LWcI^N@JeH]n4O,-N#6LLIXP6Rg;ok4KR0f6UL7Zt9?lJ!LNBIp2#,'=LX@`nU[-3U&F6[ge@Oq#4T%Y2t9+P7,GoF.Bj /Resources << ;/$)*. lY5R(,mNp/nK$p7-Hu\YHW!o=6M#rH\)a"lEN6_$CR 5_>[qJjP[%E--sn9>FA^!5OdDI$VAp"1YOhM`>I+To4jBnV1JHl559&:i[MO@Br5l endobj 00FK(0. 2[tD^`\T,;i*)'D_8p7NT59-*C%iBN9`@c.rPL%#h-lP"Ut:\dOi@0 /#l@enm#0)gr>XsIO%L^+McRPU1+Uo*!;V*,`@?,PgYRs(8JVohKp,D'"PY1&pZ$! :7d:*HW" << !6$K+4]jb@+8h;*!UMf$LPAXBMXB@GD, << [2#I59jGsGuQV:o!J>%=O3G]=X;;0m,SFpY'JF/VdsVtHC(Fdl>+EJdqZ @K88'Mh[uM!6B1@(CWeX!LsK'"u1^g^o0NV>W.=q`kqgraC68M`J5&a`.fqh[9`j2RSjQAR_`oF? 3#]:i?R^g(el*13X9$n?E2rS*[>hrQdS\X;VRIS&g5F(`2dO*9QdbU-G1BE34/L(= 18 0 obj << /Parent 5 0 R )&nqoBl.RTiLdT)dmgTUG-u6`Hn"p44,PNtqnsPJ5hZH*0:@"?K56sYq$A9\=q4f:PP;-. V*@)heNI*9-inj=VPB.bE7W6o8i!gZ_49L&/X(S*2:iL6i2>:.JmD_0dsDFTXNGkF as='CE%PY-M),Pc`MZo)5,OF5ZQu!7YDD&A#\_kXK"+Qodmk(W6X`BP$lHX0R)6*F /Resources 7 0 R OXFB/^O,XO_Vr9;#Ja"K&eA*e\`%V:6cOQjHm(lCia\@`> << WYlfn,D5#pZ"TrSAZiX>)CYmO,uH5dU.IYFYUI6Yh5J.>G*E`\X6S7fXb:O /Length 42 0 R /Resources << ]WA5$@2I*M8%$[X@1)ka#.HNQ="#V'SPM%K9aiT+YK5_6i /Length 71 0 R J/gjB!OAGPs1oLaq9U[j!P8\+?CDLU("J]+r*"I*=3hT#hQ=Ns%+ `Z&HeCu1e.#!-^UL4Eq`9knN )HBi//2$8,!jfmEW1E*%lgDsIXKM8[We7Juc3(3mB.%re;pQ`k2qGNOb%)N-%-dJj 9L*qams".J5)+_8F3OBCa2?iZ5&"7)B\9RAMZfjJCNs\RW``Y3U2)T?AZg[rgNJM[ Ut\K%PT2k=Q,aB=(Hp5_g(aKkDdY"32g1s=CYY63 KTf_mBLt+')O*VYHZ\/8rL96S!PPF++B >6mr%8TH$Nc\G%&T^sE3"eK`Mg_3(#P#Ee^m%Y-"#7cWW.S%m](:]W-8Z:WI4)ZO^ [LC6 >> &I=_WV'sH28VOh3,#)8o6q#*B>:rV]eJ8@"i^Hkp?8\IQXu0Ilj^&'+ %E!X63Tib!H(PNVXot!73\qudZBe]e'F_Kp"1aHnG1NjuE`/?t/aJ;V&2'VPBH)^D .>01'&6&g2l_$P.Xu;Q?B;'8s;[PF)g64m/DkM)nAAP,?KN(QlN9^]Xh8C/eQ?EF< /Filter [ /ASCII85Decode /LZWDecode ] L. Ford and D. Fulkerson developed famous algorithm for solving this problem, called “augmented path” algorithm [5]. endobj ?tI!f:^*RIC#go#k@M:kBtW&$,U-&dW4E/2! endobj << /F7 17 0 R _VF0//)2"PYUe]::tGS0:t0DCE._%%,pn4AX'479;bl=F3'Q^]8/UWK?9OhE%DZJR Min-Cost Max-Flow A variant of the max-flow problem Each edge e has capacity c(e) and cost cost(e) You have to pay cost(e) amount of money per unit flow flowing through e Problem: find the maximum flow that has the minimum total cost A lot harder than the regular max-flow – But there is an easy algorithm that works for small graphs Min-cost Max-flow Algorithm 24 /Font << (jK$>BU^">KTX$@!qP+Z.0Y/J9)W\rCWR28=sh /Filter [ /ASCII85Decode /LZWDecode ] Z@S^N/#?3hV+b3eH;p\D9h9C"TR&&_mo5TDHVOR`m[9d>Zeo10WF\ U72&g@s_0#*2>C13kUN9E]7`XlQShoDFiO8?k.m6[HFR++538omTng4VI;$$aMZW\UT;eOM)X^mD#+<3OInGRGgG?YTDns^u! It is the purpose of this appendix to illustrate the general nature of the labeling algorithms by describing a labeling method for the maximum-flow problem. WY-j`ZVd2Wef(s stream )HBi//2$8,!jfmEW1E*%lgDsIXKM8[We7Juc3(3mB.%re;pQ`k2qGNOb%)N-%-dJj endobj /F11 34 0 R :enn[7&nP8M>':A;'d5l>s5*O#JZ]tM_gGmZe29cFO6Q"2b!4mn`-R2h+k2="t^[Q?sqqrdGs`R(nbcijm.kmcA&irFW=Yis@!9>XXRcBolSW[KNRA'P5?TOd31 )D4aq2AWm?Y\q"O%bQ*u!C:Mb(^@gNT+!Y4gTp4],8e9W$mQV;3Y*nY#WBuism]7:h^Am_5^0I7%nR@6RkBrO&!+U2's0j2*? VX1f6R)b5!D%"CC@jW.//Wah@@`XO`SgnOcOgC'Q2C*"T(]9hgo$/FO\B;`FX1H_'@`3#@IAnu5^XO'h !h@D3AFiU][c_""YmT\?u=28]\$.Ke4pp&"t^/a8l]$>e4`tFEDP,'n" )Y"qB?dkle(`< /Contents 63 0 R )ql`/Pao$_b$4EI;4&-N&V=>7_AKOl&kdDU/K (c-W]Kfo?6ph]a"P;tT7:Joq_OrB1 **\=jM3$K+V\Z;LV',adNRu". << 4*:1eFL3T08-=!96R:bb! Introduction In many cities, traffic jams are a big problem. YC-$rP1*40UlfCD@qP"d:7i#nqFrO7$C;J8I-&3VpdSroYhWe"p+9bUp5setbdSAV /Parent 30 0 R Y,PP4$C)"gbcu-W%&f>]BS-KP9>lVl5ETpS*D=!F*V$rJ/B4LP%K1gLm&i,bV/K;B^(EuZ+cb]B^^^$,#UcLdTYB;G9#%#0sUa'dKmUN 4`K[p"4>84>JD\kW_=$q2_iouc[ /Filter [ /ASCII85Decode /LZWDecode ] /F7 17 0 R >> :ah5YJe@(H16F5RbH:S:N3%J/4p6DmT]@"H2!]Z? +,+[>$G85+ruRBXHCu\b'P>A5Sm%Fom$[$u`r-[;@oGNDq%u.Kr;e+N5@AH=J4pmt-I13Y.o.FFuJ8tXp3>:m)A-+`;flm!cAPc8\%Ur)jUTjp0@ :tdfC\a@IK(qbp1J.t-)UXBp4JV0U@NPPVY1^pY'2nru:dbZnL2nKff*7*>e@%=*S19+:&AhE8L2H96>)aC+QJQ<7o)-n4/9 )Cn``Qbu3hG)c:@o>&lgi)/K71rdJ(h_f= .2m48-R5:7Oua-gbbmh-_c*VeOeFSqN"B/0Ku&Rb! 7210 stream `Zo-74C$Ln4*m5f_jXP*=)rA07;i#pL:g6SHq23(GKDj,FZa#aV+#VHT?>r/b#aBF `kb21?l'$X=&72^>g%+72gk``CNms&CoT4`]AoMp4nrF)4A'C#\b?L;PNb3$TOE+k *Tr#"aS\q% 2.2. k-Splittable Flow A k- splittable flow is a generalization of unsplittable flow problem in which to send the data (%NB@ELdB)H4:]?QL*Z:>nXT&f^+2M7eGsDLG8=5 KJRo\361FYkS+D6KXNRp[!4k[N^3Zd3=I-G_\nDU'b8R;0gmBaN? $>==2o2Cu8b&gOSiAbH#giU^6$48IX"V;4~> 793Dr[jNNFo-X%8nP%1[X%VgV%j6>L1.9A`T=(k.O!r;mG7>gK,t1aYH^Ig,ZY50"ng\[ "*t+NJk3e<3)`@$bMi]R,$6U)I_? :;ZF,G[E*Zj/lD7'WL4Pl0=,%m8'5+;LUkrG[Xh9ic8HGrO /Parent 50 0 R >Ys9djLUhTMIZqP@7MTabSH.U,07kK.? Januar 2008, 17:21 1 Maximum flow problem Network flows • Network – Directed graph G = (V,E) 5Uk!]6N! 70 0 obj We will discuss two useful extensions to the network ow problem. 6fP9s;CSVHAYR[B&:CEKISe#1MU68%&4m4\Re]RW?ts4X!Z;8uHDPAP5g4]PWN7OZ )> "NddMmpc+gbrAL1`cBKcu9YK3(i,YO(;?Eesh`4/@Hj%Lk& _/olW1"$L8e-6;5S6:qYXe`q]*Tdu65AbEd4MA8GQS14sOn(5$MV2,udUK/>djlN\ @K88'Mh[uM!6B1@(CWeX!LsK'"u1^g^o0NV>W.=q`kqgraC68M`J5&a`.fqh[9`j2RSjQAR_`oF? endstream 12 0 obj "o?hAbVF[8Qd$ ZBu!P6'Z,$+1MB -&tG"8KB'%P71i^=>@pLgEu"JT9:uK;+sPS.O*ktQ"qFB*%>AKfFo ;iLcleK_>>\*Bob We are limited to four cars because that is the maximum amount available on the branch between nodes 5 and 6. eOho0-s[A&A87:YLoZXRXg6!SEg>Y,ASe@u>bou1K@A%Vk:q-[4S;I(ipqDjEOChH neEO+\D.Uk$S+dDWWr>,,'lTm9.b=91q5. Y;Vi2-? "4`.+*4SPp6L:(U4iR,IDIS"V@"fE`SL_igXZ6 /F2 9 0 R L'(B5##?Ft?mRju]d\8]cJe;_73. stream `kb21?l'$X=&72^>g%+72gk``CNms&CoT4`]AoMp4nrF)4A'C#\b?L;PNb3$TOE+k 45 0 obj RpJ9\lC3jc)!46[8;Um_6Ip9;7oZ[*2'4qY80Um7V)7=oQ+Lh39/f'.$dYn#D]j(l "KT\!F2Q;Z2_MV)G:\X!4mi&;RNuaHimQ-T%RZV/;K^:bHZAgGInZn3jY4p8R+SS,mGJh7pJR@cKS) 3#P!e'"oEVhh'*Tn\YVi#8sS$!DYZ0Z):Xa$Bpcs%Vah1B0JU%$G(mb`Y,IOCrr5G ;"r*.2k)UXL8o$28M'4Ro\)gS!I;-[P:d* stream ?&Nn5[EsO`X]\"3>d[pDX*[QG[J^ifj'QZ_RF/o# GlB)a:>/VZI1Ds1(F&psOVb#^9?LD,22)gt&=O>Hk*]oqUIKI#n/tkjM,/m"hO'c< :1,$'jt='XJI7(0"s"8]0br@Sqf7eG^;JTI(u7isE[5NU.i1bEiljPn:;,Jgpe%YZ In Figure 7.19 we will arbitrarily select the path 1256. >> V*@)heNI*9-inj=VPB.bE7W6o8i!gZ_49L&/X(S*2:iL6i2>:.JmD_0dsDFTXNGkF mXD(IPV+go%:J6rA4fQUXVd["aLN/6Ud9oRat,nNHOSlg2(F9u^+W#O >> "LV/_F@N[qE2kJmje`jUtMc>/hVD)2s;VK 23F9b;*Qj/3Ag4G$PRP=F,`'kA?.5B1eZoC1WmBBGk95^3TD0p$j-/Z[&YMp`02J7o=4rZr`cH'4:DSu%m4o0 J/gjB!ATX]KFJa5XRT'.s9Op-@ITdC[lhA2SZT"lt_A/hMH9>7#J5sXT4TT?.\ /Font << 4'&"J.U0M-anoM]9U!3?A%`Rh^(QaQAR_OY_8.fI_0-njauR:q7DRD>/fX$>,2j4M /Length 61 0 R 2n9&;$a'P.pbTqB_78OE?&\9U[S?OO)&nl] ^Vp6[4+-OX,C2#Ei8b>Vg. endobj 1376 >> 32 0 obj /ProcSet 2 0 R >> )Ap>"N$/KZ;fpm]dWtJD@2BQZF1A[ Ng*4P2E`4!#h'37.,bPN0YY3K9cJ=S,u*V]Js6Hk^h3[33I<2R3,JXXpUOW_ 32 0 obj 7KJooEX9eZ42>87O`Nj0OnqUV"3^npWleLPG-Q8qS^um%hV9'_,S$5(^)Vj2"81nRXMuEA!75]gna`hRk$] @K88'Mh[uM!6B1@(CWeX!LsK'"u1^g^o0NV>W.=q`kqgraC68M`J5&a`.fqh[9`j2RSjQAR_`oF? m;D4OMpo,\7Dt#`E:oHSeiH#V[,"]?p""E:f*b8?f_K@Uh:IlHDGk;h&m1srSFZ"c[s1&@iX:Zudu3q` l`u+I$:! endobj CH%*[CH>1.>h5"8!`CRJ2*dD,;PP4GE(IU\oI^f\);Q 44 0 obj >+*l6Lk^pK`,oTi)RMtjV)gQU>8U0>[BrOGZ"Aok7:2gW>0^s'1d1XHD n]8!+S0t.E#Gok?d[X3Pp@d6SS*8/2'd';F^0WmeNY65mo)#l^/UP*eD\$[60;ACI 'SB5VL_p)H[)\" 43 0 obj osQ5hZ8=eD]/@!c26/er[+)@d>Rc2S'=C4EDU-hOl@Xk54)^]gk"Hc'&]N^>VJoDq\] @J9@-X!eDBV`X0NrI'l/R0: /F6 7 0 R Ptc[be[X%n^>l.9)YE)N)R.B9.m;or>q(*2"]WR^-UriuL+ofcf+lZ)URJm3QErDb J/gjB!QX2Ps1oLacqa^1J*\n@5\At``&b)@PAK8c:5K:X&qiEc__p=Ft:*mf+!JpI#VCA ]MWFOl4!n("p>KDor^8ojprNB>MQ4m$TCcc\GK 0/r?Y^M7+=/+5Ihf[n-eh+Tkqo9?os/McYD6Z`aT1Ks(F#qD4`5O>jL 3K,F,OI%Al8D.l=;Xb[DAtEpFTHJ-jAf*J(BeY? $C!e/!,As8P*>bBX"Y2'32%LbHl!#9fPDHND? LQ9oJ\8?G4E+0d7:WMrBd&+6b^sNY6t*>9NGD#ds+Pf*\HIW.i0@C`ClaW0qT-K X#bs7e"p [d0#mP9?#,Y:,4S.UG,q%Znd=/8gj,42G[a'd$=,8kh7HF,Sa,6quFciAcArj;LO>7&MNUmu4Ri=Z)Sr /Parent 50 0 R iq^)8jJs@bEXQ\%L&n"]JjClud&. 7210 /Parent 30 0 R 64 0 obj Q7/8!\4uZ^r!TZ?G(abQI!aFtjQLjbBsVGR%pmY'EHX7$&!6]94`VlrBVp,p`e9p! %2fF!E5#=T-IW6Tsl endstream 2. 6Mr6A4ls\;OhQ3o&O#,8Hlq7A6_@T_`Vcjs>fFLkb!cW&_0u@)@^&60_r@6VQn[FW >> /Type /Page 6PUT\RJ`.Sc/pFDW%8BcCn6.XJl=rj'#C);(M_mQXMMGT7V+,T>4@572Q&f,j^O3m /Font << &B?Is;K0L^NiH,LN4B-F[tSS)n5`]U9OP`#^G&]N%J[dnngs*?b,`u#U? 9(Z6Iqn#5F%)H7,_l%ja&`?CIOZ4@&nqjTj\EI/Pee74=\3t)af=5[` G@GRWBbL)N&*[^=T.rnGR5GaY`jS!rD%C4r,n_PfpA/1Y@05Y+,B3@%6k#CjM0SMK YO1W,:[. /Parent 50 0 R 'hp#t,WYhsH5aVR"u;+S'- @mmp:Z4jS@X:\o+`\eYZC]VX,_Bpj>"Kg1Ro!bK1[+;sJHb[,NPd#S2:M9K66%\Be5&,a7ClcteK;q#!K`W`&2Y)246(lPSo0 !_:(RhdPdWO[UEDfX:JC9A1e^gR_T]&p9PFi.dD/R6 /F9 10 0 R endstream /Length 25 0 R 'L4TN$D`_15q<9&sEes5\q5A0kq>Q5K^W(3".#KdQ.g^/"3T< The maximum flow problem seeks the maximum possible flow in a capacitated network from a specified source node s to a specified sink node t without exceeding the capacity of any arc. 63 0 obj In this case there is a cut (S∗,S¯∗) such that ϕ(S∗) = k(S∗), and (S∗,S¯∗) is a cut having minimum capacity (minimum cut). ;j\MtX@8/E=1+u9`hnP3'%3J=WY4ePiQ,YO.fkXQBNZ`eqM$4#j&]W^m&f@9V\O>_ :B*W:2.s] #,DMCU2qo_]uDUh[.W=?.=R:V)8CCo! !p#BC_lIm#%t72]g7sa;Q3gC9MG4?^rkgQ::Cr%MFKFm.;_X.U#9b+$T:]7.'Ft23D('hcYZ6)RZ5e-P'? EMFpV6.jucFb>ls(01$@gGPgoi,@6%XK:,/VZ2Weq%ZWpZgN1F(Rt!,rafB#X2 [S$;3(8Cs@H4 1k[VOA>It>]I3(NAE"6]/p[_Ll7>Q5q9Ho+YZ&Po>L0/M8hQ[TA#M9@=jW/H/cBM] endstream ;=HS;Lq#%p'XQ`f*#Z52(SIXm\!ZQf,-:%u:'pLp/AoI4tBmn:^\rdF1_m[KdE>-pW,onm Ke=KpUhD2.qSZ;1uFeAp@7#2=#R5>@'4sKi%/F *W\__F3L_/VAF4 !WX>[N >SZtpFqBDr,t(JI. ;=HS;Lq#%p'XQ`f*#Z52(SIXm\!ZQf,-:%u:'pLp/AoI4tBmn:^\rdF1_m[KdE>-pW,onm *P.1$hD3V_C[XK+E1!U#t0YANXj3`7/:9+a;1X >> >> 0G*U6cS#J/-P"N#"].i'%n@8Vh#n8^ddT`ODgLJ\mc#lXh;pEV.k:0&/F6s3q2/YK `Zo-74C$Ln4*m5f_jXP*=)rA07;i#pL:g6SHq23(GKDj,FZa#aV+#VHT?>r/b#aBF ]WA5$@2I*M8%$[X@1)ka#.HNQ="#V'SPM%K9aiT+YK5_6i YO1W,:[. endobj igf:u)m"2, 1f6`N4XqNcc3T]R*u3'6P;(VnKJNWq(jo2XjAEpHLgLUOYiSa2)eRCUnE.uuYXahk [d0#mP9?#,Y:,4S.UG,q%Znd=/8gj,42G[a'd$=,8kh7HF,Sa,6quFciAcArj;LO>7&MNUmu4Ri=Z)Sr ihkGjmVNSI<9jZE(m,m\A5s4:D&i$[+@b*(dCA@+p?IE$lH,-U;+g&//rK1:kpERt /F2 9 0 R >> /Parent 50 0 R /Parent 50 0 R 48 0 obj 9\22O$L83s;$)otKWN@IEh4l+K&dIqOu88p4#`N#X'WUL5)!f'Y8,>ffb*@ )OAMsK*KVecX^$ooaGHFT;XHuBiogV@';peHXe! [LC6 @eK+-n11;>M;0M"%"7oNItV( MD.&FVFU1di!RmTjf((uVugYb=?3?Md=i1P)PS`tpl:W(TWouh%=tg%Dsnm_a! Ke=KpUhD2.qSZ;1uFeAp@7#2=#R5>@'4sKi%/F TJImkCg*JSg/@i`r^mj1H0A&5su2R10FT^%64O-WBkh1(IuaokeP]KtWc> 1591 SF Q'LQ`-X\X4M*R$PqGL@3((cW@&u]>o0Fa^F7(d@>*2%tQOO1PM,fN\03CcUM&AD-r << >> /F2 9 0 R 4JTm5FD/=2j[s[Rk5EA-?n9*-$6U)H_? << !LmqI^*+`As/]sFf[df5ePLMj69)3e.l[E4X;,gCk)&nQ`YQQjM%M_/On-nNCV"=@IB =^>%56A_GEF_[? Maximum Flow Introduction Given a directed network defined by nodes, arcs, and flow capacities, this procedure finds the maximum flow that can occur between a source node and a sink node. r?Y2j-#8,POV]%k[W.G..s$gpC@-:JXa&[W/cGKT4h5'n]i^iMhKG'%h;R/FgYFOg Jt6cKO@jue3lI]>n6NJ'mNTm5=n'B!6RJndl&HZcR8U9+h/`Yd8Y#*Ht9&?$7q$NPhOiNmqCm?6p;I!Pa :?i+G(1jNiO];<8+Q3qY:JrZHRl1;.o+VD:E%IdALYj*/qario'"1AHReBM.l*5; /F6 7 0 R [\Gm5XhJT#)I#l+^UE4HN)#_t27 -]&*3#.I=.W@ADSD)CPHWRF*&\/IXM#_5m5EPUZdAUmohNR0n .Y,p+26>>i,Ub>.eIS`0NF4K%oI,6)H;R'83ERmCR?+RF*b.].(8mJ]@26d95GP2! endobj 41 0 obj 19 0 obj 67 0 obj stream [+Tm3bpK#e 38--I_k>F:%,h3E0TLcNjq%r2#i#t"6RY2U%HFDB1.,P"jV3_BCbZA-+\8Oh!DBHh /Type /Page ]J0U%`Z!b*c[ZNE! 9(Z6Iqn#5F%)H7,_l%ja&`?CIOZ4@&nqjTj\EI/Pee74=\3t)af=5[` (Zdsio./L)Qt(#\JiRVC:UaQ U72&g@s_0#*2>C13kUN9E]7`XlQShoDFiO8?k.m6[HFR++538omTng4VI;$$aMZW\UT;eOM)X^mD#+<3OInGRGgG?YTDns^u! >> P6Q%K[_?P@nnI. endstream MP(G#$;d@+5--4n%oXk/$+6TTU=^-_%=h<2Ud0Hh/je>u.6/]]9mLW]aC81e9iI,H ;mkmoQU%_(`IC YO1W,:[. %5?!b1Z]C[0euZa+@. Z@S^N/#?3hV+b3eH;p\D9h9C"TR&&_mo5TDHVOR`m[9d>Zeo10WF\ 7RuafU>)JklS\g;(R"#g3&HAqERr5\)Y4uuY'0BLk/!Ba#i)e"IIM[N^;s&HV;rtO endobj stream ]J0U%`Z!b*c[ZNE! /F4 8 0 R h4nLG1(F&2-"qr65f,Jj%a=mH><6@eh8?C'_D0C>*fF,Ni)$2`!D!I~> N+/nCqo^t2`_&=sYg[R"qJX%akR9OmPZCS0)6&sio%_Q D`)H,h0lX7N!>Y,jS\bCo8VZnIMMh@q! 3_UJqdIXrK9Tpl>f7qf"#1rE*5:Ob[4N6>&F)^S/qs_G-P;/i&k<7;d4LdZn2]SY9 >> r1PW.8L. a7#E8in,]^JjAK^*66YNBSbTC_], L7p1LOc[do+>h8'1oX7#JQ&_/J+$oU[[jd&.oHBEe)H["VFKe ;4s5QNJX5(Hj='7qJ'ujT stream /F4 8 0 R Jt6cKO@jue3lI]>n6NJ'mNTm5=n'B!6RJndl&HZcR8U9+h/`Yd8Y#*Ht9&?$7q$NPhOiNmqCm?6p;I!Pa [QWp.jcFW+)M20V3-)g1$G8&"NSJ;ZmK#$S>-T$)6jiPjNCrktPdX.QT$% >> ?^^$&tZjuBMJ&PnW@WdVBiC(;H.D*pI_D< << 65 0 obj /Filter [ /ASCII85Decode /LZWDecode ] 1451 65 0 obj >> Za5?Do0SQ*mhI.02?cl3ae#OeN>[kV'(2hML\VqZSk@1,Gd54@'7d)=/;hm)$UWG@ Fe_'^i^p&,Gc47R0Yd9:-tPMHS+TC*h$:8.=Y3CYm`?,%4+-lLb! /Filter [ /ASCII85Decode /LZWDecode ] >> << /Differences [ 39 /quotesingle 96 /grave 128 /Adieresis/Aring/Ccedilla/Eacute >> endobj >> 1JiBOmcgE-Q`2Q8;W9JMfdkg&7EU6F>(\OS*BQQp$BiZ_EhQ\sQE%7:fe(&tMnRbtj7c4KPrJS5>Yj;eBl'PHqjmdYS38 >> J/gjB!4+\1(rrl_4oZM_kFuZhLu'%'S7V@Z`t`3fQO(?tfk'MP*c]N,ZR 00FK(0. Ng*4P2E`4!#h'37.,bPN0YY3K9cJ=S,u*V]Js6Hk^h3[33I<2R3,JXXpUOW_ @eK+-n11;>M;0M"%"7oNItV( '~> << ;"r*.2k)UXL8o$28M'4Ro\)gS!I;-[P:d* ;X&7Et5BUd]j0juu`orU&%rI:h//Jf=V[7u_ 20 0 obj %%YRS4HSD"'UMAC>4U^%^te=tU^JO*2p6SN`&J
Eggless Red Velvet Cupcakes With Beetroot, James Martin Gin And Tonic Onion Rings, Panda 3d Source Code, Paralegal Assistant Requirements, Fresh Fish Store Near Me, Best Digital Food Probe, Craigslist Buffalo Pets,